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The Calculation of Multidimensional Hermite 
Polynomials and Gram-Charlier Coefficients* 

By S. Berkowitz and F. J. Garner 

Abstract. The paper documents derivations of: 
(a) a recurrence relation for calculating values of multidimensional Hermite polynomials, 
(b) a recurrence relation for calculating an approximation to the Gram-Charlier co- 

efficients of the probability density distribution associated with a random process, based 
on (a), 

(c) an efficient algorithm to utilize the formulae in (a) and (b). 

I. Introduction. The paper documents derivations of: (a) a recurrence relation 
for calculating values of multidimensional Hermite polynomials; (b) a recurrence 
relation for calculating an approximation to the Gram-Charlier coefficients of the 
probability density distribution associated with a random process, based on (a); 
(c) an efficient algorithm to utilize the formulae in (a) and (b). 

The relations for producing Hermite polynomials are generalizations of formulae 
derived in Appell and Kampe de Feriet [1]. The recurrence relation mentioned in (a) 
above appears without derivation in Vilenkin [5], which further references a disserta- 
tion by Sirazhdinov [4]. 

Since Hermite polynomials form complete, biorthogonal systems with respect to 
the Gaussian probability density, one basic use of the polynomials is to expand a 
near-Gaussian probability density distribution in terms of the polynomials in a so- 
called Gram-Charlier series. As we shall demonstrate below, the coefficients of the 
series can be calculated directly from the time series generated by a random process. 

Finally, we present and prove an algorithm which computes a Hermite polynomial 
or Gram-Charlier coefficient of vector order m by means of the above recurrence 
relations. The algorithm requires the smallest number of suborder polynomials 
and/or coefficients possible. 

The derivation of the recurrence relations is the responsibility of S. Berkowitz, 
and the algorithm represents the work of both authors. The algorithm has been im- 
plemented in FORTRAN subroutines by Mr. Garner. 

II. Multidimensional Hermite Polynomials. 
A. Definitions. 
1. m = (m, -* * , mn) is an order vector of degrees mi. The polynomial or argu- 

ment x and of index m is said to be of degree mi in the argument xi (i = 1, --, n) 
and of total degree m = E l Mi. 
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2. x (xi, , xn) is a vector of arguments xi. 
3. R = Q` is a positive definite matrix. One calls R a covariance matrix for the 

particular application of expanding joint probability density distributions in a Gram- 
Charlier series. R _ [rij]; Q -[qiji]. 

4. The complete biorthogonal systems of Hermite polynomials IHm(x)} and 
Gm(x) l are defined by the generating functions: 

(1) exp [aTQx- 2 aTQa] = E cm(a)Hm(x), 
m-0 

(2) exp [aT - laTRa] = E cm(a)Gm(x), 
m=0 

where 
(i) cm(a) = JI-1 ami/mj!, 
(ii) the ai are arbitrary. 

The sets {Hm(x)} and {Gm(x)} are biorthogonal with respect to (det Q)l/2(2wf)-"l2 
*exp [- xTQX] over the entire real n-space. In the case of unidimensional poly- 
nomials (n = 1), both I Hm(x) } and { Gm(x) } reduce to a single orthogonal, complete 
set Hm(x)}, which is generated by the following relation (cf. Erdelyi [2]): 

(3) exp [ax - 2a2] = 
a 
? Hm(x). 

The polynomials { Hm(x) } are orthogonal with respect to exp [-_x2] over the entire 
real line. 

B. Recurrence Relations for Hm(X) and Gm(x). Differentiating the generating 
functions (1) with respect to a,k produces 

- {exp [a Qx- a Qa]} = Z qki(x1 - a) E cm(a)Hm(x) 
(4) aak i=1 n9=a 

co I ni tnk-1 

mEO 1Ikm!a (i k - Hm (X). 

By matching coefficients of ak,-l Hiekami in the right-hand equation of (4) one finds 

n\ 

Hm(x) E( qkiXi)Hm-ek(X) -E qkimjHm-ek-ei(x) - qkk(rnk - 1)Hm-2e,(X), 

(5) kl 
k = 1, , , 

where ek is a vector with a "1" as the kth component, and zeroes elsewhere. A similar 
operation on the generating function (2) produces: 

Gm(x) = XkGm-ek(X) - E rkifm iGm-ek-ei(x) - (/11k - 1)rkkGm-2eJ(x), 

(6) jkk1, ,. 

For any particular Hm(x) or Gm(x), one has a choice of n recurrence relations. 
The value of any term in (5) or (6) with a negative index is zero and the jth relation 
must not be used if mi = 0 as one would falsely conclude Hm(x) = 0. If one chooses 
the pth recurrence relation to compute Hm(x) or Gm(x), then m, is called the pivot 
order, and p is called the pivot. 
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III. Calculation of Gram-Charlier Series Coefficients. Consider the n-dimen- 
sional vector time series x x<2, .. . generated from a random process whose joint 
probability density is p(x). 

The components of the kth vector of the time series are: 

X = X() 
k ) . X(A;) 

D.note the Gaussian probability density by the formula: 

Po(x) (det Q)"12(2ir)[-/2 exp [-- - _,)TQ(x - )] 

where (a) U = pA, l , n is usually taken as the vector of ensemble averages of the 
variates xl, *-* , x,, respectively. 

(b) Q is a positive definite n by n matrix, usually taken as the inverse covariance 
matrix of x. 

One can expand p(x) in a Gram-Charlier series as follows: 

p(x) = po(x) ? Am Hm(Y), 
?n = f 

where (a) y =Yi, , yn is a normalization of x such that yi = (xi - A)/ 
(i =1 n), and 

(b) o-, E[(xi - li)2] is the second moment of xi about its expectation. 
The biorthogonality property of the Hm(x) and Gm(x) is: 

(8) f po(X)Gm(x)Hp(X) dx = b-1m mipn 

where: (a) S indicates the entire real n-space, 
(b) bm = H7_J (m,!)1', 

(c) 6,, is the Kronecker delta. 
By means of the biorthogonality property (8) and the Gaussian weighting function 

p0(x), one can formulate the Gram-Charlier coefficients as follows: 

Am = bm Gm(y)p(x) dx, 

or, simply, 

(9) Am = bmE[Gm(Y)]. 

From (9) and the recurrence relation (6), one deduces: 
_ ~~~~~n 

(10) Am = bm E[ykGm-ek(y)] - Z rkimiE[Gm-ek-ei(y)] + rkkE[Gm-2ek(Y)]1. 
i-i 

For a sample set of M vectors of the type indicated by (7), the first term on the 
right-hand side of (10) may be written as 
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The expectations jk and a, have approximations 

1 M 

(13) 
~ M 

( 13) aIk ft-M E (x) - Ak) 

Thus, by substituting (11) and (9) into (10) one has a recurrence relation for A. 
(which, in turn, employs the recurrence relation (6) for Gm(x)): 

(14) Am = [bm y)Gm-e(Y)) rim k = 1 n * . 

Similarly, for the expansion 

p(x) = po(x) E BmGm(y), 
m-o 

one can derive the recurrence relation: 

Bm= E qkiy') Hmfek(y(')) ,qk mk-B e 
(15) 

M i-l i- fi 

k- ,* ,n. 

As in the recurrence relations for Hermite polynomials, any term in (14), or (15) 
with a negative index is to be regarded as zero. In fact, since the indexing in (14) 
and (15) corresponds (with a bit of manipulation) to the indexing in (5) and (6), the 
problems of sequencing the recursive generation of Gram-Charlier coefficients are 
the same as those for sequencing Hermite polynomials, with the exception that only 
the vectors m - e-e, j = 1, - * , n, need be generated for the Gram-Charlier 
coefficients. Therefore, in the remnainder of the paper, we restrict ourselves to a 
discussion of Hermite polynomials and make only parenthetical restrictions where 
necessary for Gram-Charlier coefficients. 

IV. An Algorithm for Generating Values of Hermite Polynomials (or Gram- 
Charlier Coefficients). In recursively generating the value of Hm(x) or G.(x) from 
(5) or (6) one could conceivably generate all H,(x) or G,(x) such that vi < m, (i = 1, 

n). However, there is a test that permits one to determine, purely on the basis of 
the order vector v, whether or not a polynomial value need be calculated from the 
recurrence relation. The test is embodied in an algorithm which we present below 
and prove in the next section. The algorithm requires a prior decision on the generating 
sequence as follows: 

The order vector m is permuted according to an arbitrary but fixed pivot sequence 
vector 

(16) d = v(1), ,(n), 

where the set { a(J) } is a permutation of 1, , n. The classes V, defined by 
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V- = {V = Vi, ,V,V I O < 
V Z(j)) 1 < jM< p- 1; 

0 < V.(p) < mO,(p); Va() 0, p + 1 < j n fl, 

p =1,* ,n, 

are each generated according to an ordering Sp which is defined by 

Sp= {VV E Vp | V = Iv*V*(, Va(0) , 0), 

v= (v'(i), Vol,(v(p), 0, , 0), and 

v < v' iff E (v(j) - v(j))bV-? < 0, where b > max (mi)t. 

The class V, stipulates that the o(p)th recurrence relation is to be used for calculating 
H1(x) if v E V,. The sequence Sp is merely an ordering of the real numbers 

(vo (IVo(2) **... v?(p)b} in a base b sufficiently large so that no v,(i) exceeds b - 1, thus 
insuring the availability of lower-ordered polynomial values for the calculation of a 
given polynomial value in the recurrence relation. 

The algorithm now follows: 
1. Set Ho(x) = 1 (or Go(x) Ao- Bo- 1). 
2. Initialize the pivot sequence at p = 1. 
3. Initialize the order vector sequence in Sp. 
4. For the ordering S, over V,, generate the sth order vector v. 
5. (a) If 

n p-1 

E m() + (ma(p) - VT(P)) 2 ( - V,m)) 
i-P+1~~~~~~~~~- 

compute Hv(x) (or Gv(x)) from the c(p)th recurrence relation and store. (For the 
computation of a Gram-Charlier coefficient, we require also that DJ_ (m; - vi) 
be even.) 

(b) Otherwise, proceed directly to 6. 
6. (a) If V, is not exhausted, update s by one and return to 4 to increment V, 

according to Sp. 
(b) If V, is exhausted, andp < n, updatep by one and return to 3 to initialize S,. 
(c) If p = n, exit. 

The number of polynomial values required to compute the value of a given Hm(x) 
or Gm(x) depends heavily upon the manner in which one chooses the order sequence. 
The order sequence (16) which minimizes the number of required polynomial values is 

(17) j < k iff M, (U) ? mal(k) - 

We will justify this assertion after presenting the proof for the algorithm. 

V. Proof of the Algorithm. 
A. Definitions. The reverse sequence of indices in the following definitions facili- 

tates the description of index increments at the top of the partial ordering of order 
vectors required by the recurrence relation. 
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1. Order Vectors. 
(a) Target Order Vector h hn, ... , hi, m,.(), , ma0). 

(b) Test Order Vector w - wn, , w, W Vo(1)) ... , Vor(n) 

(c) Test Difference di h - w,j= 1,* ,n. 
(d) Masking Vector e', = en -(3nj , v ), I= 1n . j n. 
2. Pivot Classes. 
(a) C. = Vnp+1, p = 1, ... , n. (Note that the C, form a partition of the set of 

suborder vectors to be considered in computing h.) 
(b) Tp = twlw C Cp and Z.., di > E!-p+l dj, p = 1, ,n}. 
(c) R I w lw is needed in a recurrence relation to compute Hm(x) or Gm(x) } 

(d) The pivot associated with C, or Tp is or(n - p + 1); that is, if w E T, (T R, 
then the o(n - p + l)th recurrence relation is used to compute H,(x) or Gv(x). 

3. Increment Classes. 
(a) According to the recurrence relation (5) or (6), there are three types of 

increments: 
Type I-The pivot order wp is incremented by one. 
Type lI-The pivot order w, is incremented by two. (This type is equivalent to 

two Type I increments, and will not be used below.) 
Type III-The pivot order wp is incremented by one, and some other order w, 

(j > p) is also incremented by one. 
(b) A vector a = an, * , a, is in L,(t, w) if and only if a is the result of zero or 

more increments from w with pivot o(n - p + 1) and increment Type(s) t- I, II, 
or III. 

B. The Proof. The following two notes labelled (NI) and (N2) will be employed in 
the proof. 

When a pivot remains constant throughout incrementing from w to a, 
(NI) the recurrence relations demand that a, - w, > Ej< (ai - wi) 

where the pivot is c(n - p + 1). 

(N2) If any chain of increments can be constructed from w to h, then w C R. 

We seek to prove that R = Uk Tk. However, since the C, form a partition of the 
order vectors under consideration, R = Uk (R C) Ck), it suffices to prove that 

RC\Ck=Tk, k= 1,***,n, 
by induction on k. 

1. For k = 1. 
(a) Assume w C R n C,. The pivot is a(n), since w C C,. Since, by (Nl), d, > 

El-2 di, it is true that w C T1 and thus T1 C R n C,. 
(b) Assume w C T,. Thus, d, > -=2 di. 
(i) If the right-hand side of the inequality is zero, then h C L1(I, w) and, by (N2), 

w E R. Since, T, C C,, w C R f C,. 
(ii) If the right-hand side of the inequality is positive, then 3 w, = h - 

(di - Z2 dj)e C= L1(II, w). But h C L,(I, w,) and, by (N2), w E R. As in (i) 
then, T, C R r) C1. 

T, =R r) C1. 

2. Suppose Tk = R n Ck, I k ? m- 1 < n. (H1) 
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We show now that Tm = R r) Cm. 
(a) Assume w R R (T Cm. There are three cases: 
(i) w = h; 
(ii) 3 a = (a, , ap+1, w. + 1, 0, , 0) CE L(I or III, w), for p < tn. By 

definition, a C Cp. Moreover, if a is also in R, then, by (HI), a C T,. If one defines 
d'= hi- a, j - 1, ^ , n, then one has 

m p p 

>3 di >_ di = d + 1 
i-i jli j-il 

nn 

>3 d; + E (a -wi) (by (HI) and (NI)) 
i-p+1 i-p+i 

j-m+l 

Thus, w C Tm if any a of the above type is in R; 
(iii) 3 b = (bn, * * bm+l, hm, 0, 0) E Lm(I and/or II and/or pII, w). By 

definition, b E Cm. Consider any c = (c., ... *, cp1, 1, 0, * *, 0) C Lp(1 or III, b) 
forp < m. If c E R, then, as in (ii) above, b C Tm. Let d' = hi- b, j= 1, * , n. 
The following inequalities show that w C Tm (if c E R): 

m m-1 n 

3di > d' + E (bj-wj) (by (N1)) 
il2 I i= i=m 

n n 
> >3d' + > (bi- wi) (since b C Tm) 

m+i j=m+i 

n 

=E di. j=m+l 

But increments of b for pivot a(n - p + 1) with p < m constitute all the incremenits of 
b. Moreover, any increment chain upward from w produces at least one of the vectors 
represented by h, a, or b. Hence, at least one of the vectors must be in R. Therefore, 
w E Tm and R n Cm C Tm. 

(b) Assume w C Tm. We show that w E R () Cm by induction on din. 
(i) dmn = 0, so that 

(18) >di > > di. 
i =1 j=m+1 

Case One. If the right-hand side of (18) is zero, then either w = h (in which case 
w El R C1), or 3p = max {j I hi > 0, 1? j < m}, and 3c = w + el C Lp(l,w). 
But c E T4, since >3%, hi _ 1. Hence, by (HI), c E R n C,, and, by (N2), w C R. 
Since Tm C Cm, w C R G Cm. 

Case Two. On the other hand, if the right-hand side of the inequality (18) is 
positive, w F h and 3 k, m + I < k _ n, such that dk> 0. Thus, for p chosen as in 
Case One-p exists, since otherwise w = h-there is a vector g = g.,, . -, g1 = 
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w+ el + el G L,(II1, w). If one defines d'- -g w_ 1 < j < n, then 

I ' d- I di - I dj. 
j21 i j-=iii-P+1 

Thus, as in Case One, w EC R C\ Cm. Therefore, for d - 0, Tm C R n Cm. 
(ii) Suppose that Tm C R fl Cm for 0 < dm < t. (H2) 
We show now that if w C Tm and if dm = t, so that 

(19) Edi +t di, isl i_m+l 

thenw ft RC Cm. 
Case One. If the inequality in (19) is strict, then 3 y yn , * , y, = w + 

e' C Lm(I, w). Ifd_ h - yi, 1 ? ] ? n, then 

m i-1 in 
X d'- E di + (t- 1) > E di > d'. 

ji= i=l j-m+l im+l 

Thus y Tm T., and, since d,' = t-1, y E R r) Cm by (H2). As in Case One of (i) 
supra, we conclude that w C R n Cm. 

Case Two. If, in (19), the inequality is in fact an equality, then I k, m + 1 ! k ! n 
such that dk > 0, and 3 z = zn, , Z = W + e ,' + e Lm(III, w). If di- 
h- zi, 1 j< n, then 

m m-1 n n 

d'= di + (t- 1)= > di-1= - 2 d'. 
i-i i.-i 1-im+l j=m+l 

Thus, z C Tm, and, exactly as in Case One of (ii) w EC R f Cm. 
Therefore, Tm C R fli Cm, and, indeed, Tm = R n Cm. 
In applying the algorithm to Gram-Charlier coefficients, it was necessary that 

>i2 (m -vi) be even. Let u be a type t decrement of w if, and only if, w is a type t 
increment of u. Then, in the recurrence relation (14) or (15), decrements of types II 
or III were needed to designate required order vectors for the Am or B.. Hence for 
any required order vector, >,2 di must be even. Q.E.D. 

Let us now justify the assertion that the order sequence (16) which minimizes the 
number of order vectors in R is 

j ? k iff mq(f) _ m?(k) (cf. (17)). 

According to the algorithm, the vectors w CE R n C, are those specified by 

(20) w,- > w; , kp, p = 1, n, n, 

where 
p nt 

k,= >hi- > hi, hi Wf w , 30, n. 
j.- i.=+1 

Consider a Euclidean (n -p + 1)-space E, with orthogonal axes w,, .. , wn,. If 
one replaces the inequality in (20) by an equality, one has a hyperplane R, of (positive) 
unity slope with w,-intersect at w, = k,. The points in R n C, form a closed subset 
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of Ep, bounded by the hyperplanes Rp, wi 0, and wi = hi (i = p, * * *, n), where 
for any i, wj > 0 if j 5 i. The number of points in R n C, is minimum for least 
wa,-intersect kp, and thus for the minimum E i-1 hi, a fact that justifies the assertion (17). 

Naval Ship Research and Development Center 
Washington, D. C. 20034 
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